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Images and small-angle diffraction patterns of crazes obtainable in the transmission electron microscope 
have been calculated from model structures using a single theory of interaction of electrons with the 
sample. The model was of a relatively thick craze so that many fibrils overlapped. The calculated 
defocused images of this model showed little obvious relationship to the original model showing that it 
is very hard to estimate craze fibril diameters from craze images. The calculated scattering pattern normal 
to the craze showed both the refraction and diffraction effects observed previously and so is in excellent 
accord with experiment. 
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I N T R O D U C T I O N  
Crazes are planar, crack-like defects that form in most 
polymers in response to a tensile stress. They are distinct 
from cracks in that they are load bearing. The two craze 
surfaces are joined by material in a fine fibrillar mor- 
phology. Craze fibril diameters are typically in the range 
of 5-30 nm so the preferred technique for craze mor- 
phology studies has been transmission electron micros- 
copy. Small-angle scattering has also been used a con- 
siderable amount recently with one of the radiations used 
being electrons. The majority of information available on 
craze microstructures has hence been obtained by TEM 
imaging and, to a lesser extent, small-angle electron 
scattering (SAES) in the TEM. Craze images obtained in 
this way are however not very easy to interpret. There are 
two main reasons for this: firstly, the images are of a 
system containing many overlapping fibrils, and secondly, 
the imaging process is a combination of scattering and 
phase contrast. These are also problems in the in- 
terpretation of craze SAES patterns; in particular in 
previous work the scattering normal to the craze has been 
divided rather arbitrarily into diffraction and refraction 
components. 

Confidence in the interpretation of TEM diffraction 
patterns of images can be improved by a comparison of 
the experimental observations with results calculated 
from model structures using the transfer theory of imag- 
ing. That is the aim of the work described in this paper. 
This approach has previously been used in the synthetic 
polymer field by Thomas and coworkers I'2 when con- 
sidering electron microscope evidence for both order in 
glassy polymers and domain structures in urethanes. 

THEORETICAL B A C K G R O U N D  

Transfer theory of imaging 
The transfer theory of imaging is well described in a 

number of publications 3 -s and hence will not be repeated 
in detail here. The incident illumination can be considered 

as a planar coherent wave qJ0(x,y). The effect of the 
specimen is to alter the amplitude and phase of this wave 
to give an exit wave q/e(x,y). The exit wave is then 
convoluted with a microscope transfer function t(x,y) to 
give a bright field image i(x,y) as 

~,1 ( x , y )  = t(x,y,~e(x,y) 
i(x,y) = ¢ l (x ,y)  Ct (x ,y)  (2) 

The process is easier to consider in Fourier Transform 
(scattering pattern) space where the transform is repre- 
sented by the upper case symbol such that 

Ud(u,v) = fO(x,y) e - 27ti(ux + V, dx.dy 

The scattering pattern from the sample is given by 
ue*(u,v)q'e(u,v). 

The microscope transfer function is of the form 

T(u,v) = A(u,v)e iz("'v) (3) 

where A(u,v) is step function representing the objective 
aperture and ;( is given by 

X(N,l))~-g~(Af)(u2 q-U2)'k-l~/2Cs)~3(bl2 +l)2) 2 (4) 

where C, is the spherical aberration coefficient of the 
microscope and Af the defocus. For  the situations con- 
sidered in this work, effects of the spherical aberration are 
insignificant and will not be considered further. 

The image wave function is hence given by 

~i(u,v) = T(u,v)Ud,.(u,v) (5) 

so the image can easily be calculated as a function of 
defocus from the exit wave function. 
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Interaction of  the electron beam with the specimen 
For a thin specimen, the interaction of the electron 

wave with the specimen can be described simply. The exit 
wave is the product of the incoming wave with the 
specimen transmission function q(x,y). 

~l e(X,y ) = q(x,Y)~ o(x,y) (6) 

The specimen changes both phase and amplitude of the 
wave. The phase change is controlled by the specimen 
refractive index, n, and path length I. The amplitude terms 
contain the decrease in beam intensity due to both 
inelastic scattering and high-angle elastic scattenng, that 
is electrons that hit the objective aperture. Both phase and 
amplitude terms can be obtained either experimentally or 
theoretically 6'7. The phase term has normally been de- 
rived theoretically from the relationship between re- 
fractive index and inner potential of a material s. A 
nonrelative approximation gives 

q (x,y) = e - i~x'~e - ~x.r~ 

where 6(x,y) is the projection in the beam direction of the 
inner potential of the material so 

l 

= f E(z)dz 
0 

and 
7Z 

ZVo 
where 2 is the electron wavelength and V0 is accelerating 
voltage. 

For situations such as crazes it is easier to work in terms 
of refractive index, n, and path length l(x,y) within the 
specimen, in which case 

where 
q(x,y ) = e - ip~(x,.r) e -~,ott~.y) 

2n(n-  1) /~= 

(7) 

and /~o is the amplitude absorbtion coefficient for the 
material. The experimental determination of n will be 
considered later. 

Cowley 7'8 and others have described theoretical ap- 
proaches to obtain the absorbtion coefficient it. This 
quantity can also be obtained experimentally from mass 
thickness contrast measurements 9'11 particularly for the 
material (polystyrene) considered in this work where 
varying size latex spheres are available and also uniform 
thin films are easy to make. 

Normally thin polymer samples can also be considered 
as weakly scattering, that is to say, only the first term in 
the expansion of the exponential need be retained. Hence 

q(x,y) ~ 1 - i tr f(x,y)-  I~(x,y) (8) 

This approximation is valid in cases where the variations 
across the sample of the projected potential ~b are 
relatively small. The mean value of q~ is unimportant as it 
just adds a constant phase shift to the exit wave. For 
example Roche and Thomas have demonstrated the 
validity of this expression for film thickness up to 70 nm in 
polyethylene where the spacial fluctuations in potential 
come from the relatively small density differences between 

the crystalline and amorphous regions 2. It is however not 
valid for even a single large craze fibril (diameter 20 nm) 
let alone a complete craze. This is because the potential 
difference between craze fibril and void is so large 1 a. 

A thin sample is one in which the spread of the electron 
beam is insignificant compared with the resolution of 
interest. Cowley and Moodie have demonstrated that the 
spread can be well described by convoluting the wavefunc- 
tion with the Fresnel diffraction formula 

~'2(x,Y) = ~'1 (x,y~p(x,y) (9) 

where p(x,y) is the propagator given in small-angle 
scattering by 5 

( i )  - i k ( x z+y2)  (10) 
p(x,y)= ~ exp 2R 

R is the distance of propagation between ¢1 and I]/2. An 
estimate of the spread can be obtained by considering the 
value of x for which kx2/2R = r~. For 2 equal to 0.003 nm 
and R equal 400 nm (a typical specimen thickness for 
craze studies) then x is 1.1 nm. This spread is significant in 
comparison with fibril diameters which are in the range of 
5-20 nm. 

When the spread is significant then the thin specimen 
approximation can no longer be used. Cowley and 
Moodie have shown that a thick specimen can be 
considered as a series of slices where each slice can 
individually be considered as thin but the propagation 
term from slice to slice must be included 5. The total 
specimen interaction is therefore considered as a series of 
transmission and propagation processes. This is the 
multi-slice formulation. For the n th slice, the exit wave 
from the (n-1)  th slice is ~O,-l(x,y) then 

~k,(x,y) = [~k, -1 (x,y~pA(x,y)]q,(x,y) (11) 

where A is the distance between slices. The exit wave 
function from the specimen can hence be calculated by 
modification of the input wave function by a series of these 
convolution and multiplication operations. It is often 
convenient to work in terms of the Fourier transforms 
where the equivalent equation is: 

q'.(u,v) = [q ' ._  ~ (u.v). eA(u,v)]a.(u ,v)  (12) 

This formulation is easy to program and hence convenient 
for the prediction of craze images. Results using this 
approach will be presented later. 

MODELS 

The work described in this paper is concerned with the 
calculation of both craze diffraction patterns and images 
using the theory described in the previous section. The 
diffraction (or scattering) pattern of a craze can be 
considered in two parts, as it is in the shape of a cross. One 
part is caused by diffraction from the craze fibrils and the 
other by the diffraction from the craze-matrix interfaces. 
Diffraction from the craze fibrils is sensitive to the local 
arrangement of these fibrils as described by their radial 
distribution function (r.d.f.). It would not be easy to set up 
a model with a plausible r.d.f., particularly as such a model 
would have to be fairly large. This was not attempted in 
this work, so only scattering normal to the craze-matrix 

484 POLYMER, 1985, Vol 26, April 



interface will be considered. For  the prediction of scatter- 
ing normal to the craze-matrix interface, the craze can be 
modelled as a slit containing material of lower density 
than the surroundings. The relative density within the slit 
is v/, the volume fraction of fibrils within the craze. The 
results from this model will be presented later in this 
paper. 

Calculation of craze images will be considered in two 
stages. First results will be given for single fibrils as a 
function of fibril size and defocus using the thin specimen 
approximation and then layers of these fibrils will be 
combined in a multi-slice calculation to predict images of 
whole crazes. 

A single craze fibril of diameter D can be considered as a 
long cylinder with axis normal to the beam so only a one- 
dimensional calculation is necessary and 

(13) 

In constructing a layer, a certain model size L was 
assumed and the number of fibrils given by L/2D. With the 
layers assumed to be a distance 2D apart this gave a fibril 
volume function v I of 0.196 which is a reasonable value for 
polystyrene. Two different systems for distribution of the 
fibrils with the layers were used. In the first of these the 
fibrils were distributed randomly on the layer with no 
concern for fibril overlap. The second distribution was of 
a pseudo-lattice type where the fibril axis was placed at 
random within a distance D/2 from its lattice site so there 
was no overlap. Images calculated using these two models 
were indistinguishable. 

CALCULATIONS AND RESULTS 

Scattering normal to the craze-matrix interface 
The scattering normal to the craze-matrix interface has 

two components, a simple diffraction component and a 
refraction component which is only significant when the 
specimen is tipped about an axis along the craze. This 
latter scattering has been described in an earlier publi- 
cation where it was analysed using geometrical optics and 
used to measure the refractive index of polystyrene 6. 

In this work the scattering will be considered as a 
function of specimen tip angle 0, craze width t and 
specimen thickness d. The geometry is shown in Figure 1. 
For  convenience the phase and amplitude of the exit wave 
~b~ are assumed to be 0 and 1 respectively away from the 
craze. As only low resolution is of relevance, the thin 
specimen approximation may be used and so 

tCosO-dSinO 
if f -  (14) 

2 

g = dSin0 

and ff ~ = e i~(~)"~*) (15) 

for Ix l<f  q~ =~b* #---/~* 

for 

f~< Ixl < f +  g 

for 

~b = ~ b ' ( 1 - ' X l g f ) :  # = # ' ( 1 - ] x l g f ) :  

f+g<~lxl  u=q~=0  
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2 f  
I 

~ t  

~rclz 

d 

t 
-L 9 _j 

1 ' I 
I I IL 

F igure  1 Geometry of a crazed film tipped by an angle 0 about 
an axis along the craze 

and ~b* = d(n - 1)(1 - vf)2n (16a) 
)~Cos0 

#* d(l - v f ) # o  (16b) 
Cos0 

The diffraction pattern, ~(u) is given by a sum of terms 

where 

• (u) = h°l (u) + °r'2 (u) + q'3 (") 

h u , (u) = [1 - e ''~" +" ' ) ]2S in  uf_2n 
2nu 

(17) 

(18a) 

• 2hug f + g  4i 

(Z8b) 

tp~ (u) = - e "*" +,,.,(1 + s/g)[(e~(/+g) _ e~)/~ 

+ (e - t~(s + 0~ _ e -t~o)/fl (18c) 
where 

= i( - c~*/g + 2nu) -"' /g : fl = i(O*/g + 2n,) + #*/g 
(18d) 

The first and second terms (equations (18a) and (18b)) are 
the classic diffraction from the slit. The third term, 
equation (18c), is equivalent to the refraction term ob- 
tained previously by geometrical optics. This can be seen 
from the fact that it will have peaks when c~ and fl are 
minima, or when 

2nu= ± (19) 
g 

The deflection angle r/(given as Aq~ in the previous work) 
is hence given by 

q 
u ), (20) 

then from equations (14) and (16a) 

0)t 
as before. 
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The diffraction pattern intensity W" W* has been calcu- 
lated from equation (17) for a series of specimen widths, 
craze widths and tip angles. Craze fibril volume fraction v z 
was assumed to be 0.2, a typical value for polystyrene 
crazes. The value of 3.16 x 10 -5 measured previously was 
used for n -1 .  The absorption coefficient, #o, was mea- 
sured from microdensitometer scans across infocus ima- 
ges of latex spheres. The value used was 0.003 nm-l ,  a 
fairly typical value for a small objective aperture in a 
100kV microscope. The results are given in Figures 2-4. 

Figure 2 shows the effect of changing the specimen tip 
angle with film thickness and craze widths both held 
constant at 400 nm. This is a fairly typical value for both 
parameters. It can be seen from this figure that the 
primary effects of tipping the specimen are to alter the 
position, width and height of the 'refraction' peak. The 
peak becomes narrower and more intense at the higher 
angles. This result is entirely in accord with experimental 
observations 6'12. Figure 3 shows that with decreasing 
craze width, the relative height of the refraction peak 
increases though its width stays constant. 

It is clear in the results shown in Figure 4 that the 
intensity and sharpness of the refraction peak increase 
with specimen thickness. In addition, as would be expec- 
ted from equation (18b), specimen thickness affects the 
forms of the inner diffraction maxima when the tip angle 0 
is significant. 

All these results are in accord with experimental 
observations 12 and demonstrate that this approach to the 
calculation of the scattering pattern normal to the craze- 
matrix interface agrees very well with experiment. It has 
the great advantage of not requiring the arbitrary sepa- 
ration of the pattern into refraction and diffraction. 

O~ 

00  n m =  

).00 

n m - -  

0.05 0.10 0.15 
2 ~'p. (nm -i) 

f = 600 nm 

Figure 3 As fo r  Figure 2 fo r  0 = 2 5  ° w i t h  craze w i d t h  t = 2 0 0 ,  
400  and 600  nm 

o -  

8 = 55 ° 

e=25 o 

8 = 15 ° 

0 

8=10 ° 

I 
O0 0.2 0.4 

2 7rp. (nm -I) 

Figure 2 Scat ter ing pat terns normal  to  the craze as a func t i on  
of t ip  ang le  0 w i t h  bo th  craze w i d t h  and f i lm th ickness equal  to  
400  nm and craze vf equal  to  0.2 

"5 

g 

O - -  

d = 400 nm 

d = 200 nm 

0 .00 0.05 0.10 0.15 

27rp (nm -I) 

Figure 4 As for Figure 2 for 0 = 2 5  ° w i t h  f i lm th ickness d = 2 0 0 ,  
400 and 600 nm 
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Images of single craze fibrils 
Images of single fibrils were calculated using equations 

(5), (6), (7) and (I 3) as described earlier. Results are given in 
Figures 5 and 6 for two fibril diameters, 10 and 20 nm, and 
defocus of 0, - 1/tin and - 3 #m. The same values of n 
and #o were used as in the previous calculation. 

These images show the large effects of defocus on the 
contrast. This is typical in TEM of relatively transparent 
objects; very similar results for both lamella structures 2 
and cylinders 8 have been published previously. 

These results demonstrate that even with a small 
objective aperture the contrast from a single craze fibril is 
relatively low but can be very considerably increased by 
using a large amount of defocus. The relatively small 
change in contrast obtained by doubling the fibril dia- 
meter demonstrates that for an image of separated fibrils 
of various sizes, there is little bias in the sense that either 
big or small fibrils will be observed preferentially. 

Craze images are however not normally made up of 
separated fibrils. Only a few materials craze in films thin 
enough to give separated fibrils and in one of them, 
polystyrene, it is well demonstrated that these crazes are 
different in structure from those in thicker films 13. To 
understand crazes in thicker films, it is necessary therefore 
to calculate images of many overlapping fibrils. That will 
be considered in the next section. 

Images of crazes consisting of many overlapping fibrils 
The multi-slice technique described earlier was used to 

calculate the images from a number of overlapping layers 
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Lo - -  i ] ,  \ i ,  ,,-~---? . . . .  , . . . . . . . . . .  

o ' 6 ~  """ I " '  "' 
IO 2O 
r (nm) 

F i g u r e  5 Calculated image of a single fibril of diameter 10 nm 
and defocus of O, - 1 ,  and - 3 H m  
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Figure  6 Calculated image of a single fibril of diameter 20 nm 
and defocus of O, - 1  and -31~m 
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of fibrils. The fibrils were assumed to have a diameter of 
5 nm and so the layers were 10 nm apart. Up to 20 layers, 
a specimen thickness of 200 nm, were used and images 
were calculated as a function of defocus, number of layers 
and random number seed. The total model size L was 
60 nm. The effect of specimen thickness on the results was 
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Figure  7 Calculated craze image with defocus equal to 0 
(Figure 7a), - 3 Hm (Figure 7b), and - 5 Hm (Figure 7c) 
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examined by doing some calculations with the pro- 
pagators set equal to 1. This is equivalent to going to the 
thin specimen approximation. 

Figure 7 shows in focus and - 1  pm, - 3  #m and 
- 5/~m defocus images of a 20 layer model. The effect is 
very large; there is very little contrast in the infocus image 
and the contrast increases massively on defocus. The 
reason for this small contrast in focus can be seen by 
comparing Figure 7 with Figure 8 in which the pro- 
pagators have been set equal to 1. Clearly the defocus 
effects caused by specimen thickness remove the detail 
from the in focus image. The defocused equivalent of 
Figure 8 is not shown, as it was indistinguishable from 
that in Figure 7. The effects of specimen thickness become 
entirely insignificant when the microscope is operated at a 
considerable defocus. 

An interesting feature of the images of Figure 8 is that 
there would be no way to tell them that they are images of 
a structure consisting entirely of 5 nm diameter fibrils. In 
fact, from the defocused image one might be more tempted 
to guess that the structure consisted of a range of fibril 
sizes of 6 to 10 nm. These results demonstrate very clearly 
the impossibility of estimating craze fibril sizes from a 
naive interpretation of TEM images. The effects of 
specimen thickness, shown by comparison of Figures 7 
and 8, also show that optical diffraction patterns taken 
from in focus images will give very little information. 

Figure 7 is just one image using a particular set of 
random numbers and it is necessary to check that it is 
typical. Figures 9 and 10 are entirely equivalent except for 
the use of different random number seeds. They are 
essentially similar to Figure 7. 

The effects of defocus shown in Figure 7 are entirely in 
accord with experimental observations. Craze images 
show very little contrast when in focus. As they are 
underfocused, initially the contrast increases rapidly but 
after a while when there is 'sufficient' defocus, the focus 
makes very little difference. 

DISCUSSION AND CONCLUSIONS 

The results described in this work all use a single model for 
both the interaction of the electron beam with the 
specimen and the imaging process within the TEM. The 
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Figure 8 Calculated zero defocus image of the same craze as 
shown in Figure 7 but propagators set to zero 
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Figure 9 A similar image to Figure 7b but with a different 
random number seed 
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same material parameters, n and #o, were used through- 
out. Hence they provide a unified picture of electron 
scattering patterns and images of crazes. That picture 
agrees well with experimental observations. Unfor- 
tunately due to computing limitations, it was not practical 
to construct a model large enough to calculate reasonable 
fibril diffraction patterns. That will be done in the future. 

The main conclusions to be obtained from this work are 
that the propagation effects within thick specimens re- 
move detail from the infocus image and make analysis 
impossible. Defocused pictures, though containing much 
contrast and detail are very hard to interpret and so it is 
not possible to obtain reliable information on craze 
structures from either infocus or defocused images of thick 
films. It is not yet evident if the interpretation of small- 
angle electron scattering patterns from the fibrils will be 
any clearer, as the specimen thickness increases the spacial 
fluctuations in phase shift become significant with respect 
to ~ and the Rayleigh-Gans theory starts to break down. 
It seems likely that the diffraction pattern width will 
increase and so a Rayleigh-Gans based interpretation lz 
would tend to underestimate the fibril size. 

It appears therefore that the TEM is not suitable for 
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o b t a i n i n g  q u a n t i t a t i v e  i n f o r m a t i o n  o n  fibril  sizes a n d  size 
d i s t r i bu t i ons  in  thick crazes. 
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